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TECHNICAL NOTE 2561

A STUDY OF POISSON'S RATIO IN THE YIELD REGION

By George Gerard and Sorrel Wildhorm
SUMMARY

In the yield region of the stress-strain curve the variation in
Poisson's ratio from the elastic to the plastic value is most pronounced.
This variation was studied experimentally by a systematic series of tests
on several eluminum alloys. The tests were conducted under simple tensile
and compressive loading along three orthogonal axes.

A theoretical variation of Polsson's ratio for an orthotropic solid
was obtained from dilatational considerations. The assumptions used in
deriving the theory were exemined by use of the test- data and were found
to be in reasonable agreement with experimental evidence.

INTRODUCTION

Poisson's ratio for engineering materials under simple axial Joading
usually has a value in the elastic region of between l/h and 1/3 and on
the assumptlon of a plastically incompressible isotropic solid assumes
a value of 1/2 in the plastic region. The transition from the elastic
to the plastic value, in general, is gradusl and is most pronounced in
the yield region of the stress~straln curve,

In the deformation theory of small elastic.and plastic strains for
an isotropic solid, which is summarized by Nadal in reference 1, it is
shown that the stress-strain relations for a strain-hardening material
depend essentially upon two deformation functions, the secant modulus
and the generalized Poisson's ratio. Because of the fundamental nature
of the latter in any plasticity theory, this investigation was undertaken
to provide basic experimental data on the variation of Poisson's ratio
in the yleld region of some materials commonly employed in aircraft
applications.

General dilatational relatlons are considered in the section entitled
"Theoretical Investigation" and it is found that a theoretical relation-
ship for the variation of Poisson's ratio from the elastic to the plastic
value can be obtained for an orthotropic medium in which the plane con-
taining the two isotropic axes is normal:to the applied load. This-
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relationship depends upon the elastic value of Poisson's ratio, the
shape of the stress-strain curve as given by the ratio of the secant to
the elastic modulus, and a plastic value of Poisson's ratio.

Systematic experimental studies of the variation of Poisson's ratio
in the yield region-are generally lacking in the literature. One study
is a report by Stang, Greenspan, and Newman (reference 2) for aluminum
alloys and low-carbon steels. Values of Poisson's ratio under simple
tensile loading were obtained for strains as high as 18 percent on thin
flat tensile specimens.

It appears that a completely systematic series of tests should
include both tensile and compressive stress-strain properties along three
orthogonal axes as well as the Poisson ratio variation along these
directions under simple tensile and compressive loadings. An investi-
gation of this type was carried out for three commonly used aluminum
alloys: Rolled 24S-T4 and extruded 14S-T6 and T75S-T6. The results are
given in the section entitled "Experimental Investigation."

In the section entitled "Correlation of Theory and Test Data’ the
validity of the theoretical relationship for the variation of Poisson's
ratio is examined by comparison with the experimental results.

This investigation was conducted under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronautics.
The authors wish to acknowledge their indebtedness to Mr. Gary Gould for
valuable assistance in the experimental investigation and Mr. Conrad
Schmidt for machining of the test specimens.

STMBOLS
E modulus of elasticity
E secant modulus
I quadratic strain invariant; defined in equation (6)
o normal stress '
T shear stress
€ normél strain (%fﬁ)
V4 shear strain |

v generalized Poisson's ratio (}Eylgx)
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e* elastic strain (6/@5

o} strain deviation (E - €*> :

9 cubical dilatation s
71 variation of Poisson's ratio from elastic value (v -‘v*>
X,¥,2 Cartesian coordinates )
Superscripts:

* elastic component

- plastic component

Where two subscripts are used, the first refers to the direction
in which the load is applied and the second to the reference direction.

THEORETTICAT, CONSIDERATIONS

Transforms of Simple Tension to Simple Shear

For the purpose of indicating the magnitude of the effect of the
Poisson ratio variation in a simple case, it is instructive to consider
the derivation of the affinity terms which transform a simple tensile
stress-strain curve into a simple shear stress-strain curve. Since
Poisson's ratio is associated with strain only, the stress transformations
are written immediately. :

According to the meximum-shear theory

T = 0.50 (1)

For the octahedral-shear theory

T = o'/vg : ‘ (2)

The maximum-shear theory states that

Yy =€_ -¢€ . (3)-

In simple tension, ¢_ = - ye and thus from equation (3)7

y
y = (1 +v)e (%)
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The octahedral shear strain can be written in the following form:

Yoct =\/81/3 (5)
where I 1is the quadratic strain invariant,
I= %€x2 +ey® + eza>+1:': Txy® + Vyz® + 7zx2> (6)

In simple tension

Yoot = e\/h(l + 2v2>/3 | (7)

In simple shear

Yoot = 7\[2/3 (8)

The affinity relationship is obtained by equating equations (T7)

and (8) .
y = e\’ 2(1 + 2v2> (9)

Thus, from equations (4) and (9), it is evident that the strain

. affinity terms are actuslly functions of Polsson's ratio. The limiting

values which the affinity terms can assume for a plastically incompressi-
ble solid are given in the following table for typical values of Poilsson's
ratio:

Lower limit Upper limit
Theory Affinity term v = 0.3 V=0.5
Maximum shear (1 +v) 1.3 1.5

Octahedral shear |  \[2(1 + 2,2) 1.53 \3

Theoretical Poisson Ratio Variation

The cubical dilatation of a strained solid is given by

+ € € 4 € € € (10)

= € €
3 € + €, + €, + € + < x*y¢z

X Yy Xy yGZ
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If infinitesimal strains are considered, which is a reasonable assump-
tion in the yield region, the second- and third-order terms of the

dilatation may be neglected. - In so doing, the dilatation is equal to
the linear strain invariant:

9 =€, +E_+E€ o (11)

The behavior of engineering materials indicates that the total
strain can be considered to be composed of two parts: The elastic strain

component ¢* and the strain devietion . Thus, the dilatation can be
written .

8 =(e* eyt )t (5t 8y +8,) (12)

By considering the dilatation to be composed of elastic and plastic
components,

9= 9% +7F (13)

where
9% = ex* + ey¥ + €% - (1)
§=ax+5y+az ‘ (15)

The usual assumption of mathematical plasticity theory that the dilatation
vanishes is obtained by neglecting the elastic component and assuming
that the plastic component is zero. .

Consider a s0lid subjected to a simple tensile load in the x-
direction. Upon making the assumption that the solid is isotropic along
the other two orthogonel axes, the various dilatations can be determined.
Such a solid is referred to as orthotropic.

For the elastic component, from equation (1k4)
9% = ¢*(1 - 2v¥) (16)

and for the plastic component it is assumed that fbr the orthotropic
golid equation (15) can be written as

T=8(1 - 29) )
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The total diletation, from equation (13) is

3 = e*(1 - 2v%) +8( - 27) (18)

It is further assumed that for an orthotropic solid the total dilatation
can be referred‘to the total strain by the relation

9 = e(l - 2v) (19)

Combining equations (18) and (19) and simplifying, the variation of
Poisson's ratio as a function of strain is given by

v=V--§i(V-v*) (20)

For cases in which the plastic dilatation vanishes, ¥ = 0, and _
from equation (17), ¥ = 0.5. In this special case, equation (20) reduces
to

v=0.5 - %(0.5 -v¥

or

v=0.5 - E(Oj -v¥) (20a)

When unloading follows loading into the plastic range, equations (20)
and (20a) yield the elastic value of Poisson's ratio since the term
gﬁé then becomes equal to unity.

An expression for the generalizgﬁ Poisson's ratio which corresponds
to equation (20a) is also given by Nedai in reference 1.

FXPERTMENTAT, INVESTIGATION

Description of Test Specimens

The materials under investigation were loaded in tension and com-
pression along each direction of a set of three orthogonal axes x, V¥,
and z vwhere the z-direction is the direction of extrusion or rolling.
The materials tested were rolled 24S-T4 aluminum alloy and extruded 1L4S-T6
and T5S-T6 eluminum alloy. The specimens were cut from bars of square

cross section with sides equal to 3% inches.
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Engineering materials generally lack isotropy and, in addition, the
rroperties may vary from point to point in the cross section. Therefore,
the specimens were cut from each bar in such a manner that strain measure-
ments were taken at essentially the same location in all tests.

A drawing of the tension and compression specimens is shown in”
figure 1. The tension specimens were loaded through special grips
designed for this investigation. The grips were seated in spherical
bearings to insure application of axial loading to the specimen and are
shown with a specimen instelled in figure 2.

The compression specimens were machined flat, square, and parallel
and carefully placed in the testing machine to minimize bending.

Test Procedure

Load was applied to the specimens by a Baldwin-Southwark universal
hydraulic testing machine of 200,000-pound capacity with an accuracy of
loading of #1/2 percent. AX-5 strain gages were mpunted on each of the
four sides of each specimen. A wired tension specimen is shown in figure 3.

Strains were measured with a Baldwin SR-U strain indicator. The
estimated accuracy of the strain measurements is approximately *2 percent.
The errors 1n the strain measurements are associated with the strain
indicator, the stated gage factor of the strain gage, and slight drift
of the strain readings at large plastic strains.

Experimental Results

A complete set of stress-~strain curves for each of the aluminum
alloys tested is given in figures L4, 5, and 6. Poisson's ratio in the
yleld region is given in figures 7 to 12 for both tension and compression
with the load applied along each of the three coordinate axes. Poisson's
ratio was computed by taking the negative of the ratio of corrected
transverse strain to strain in the direction of loading. Corrections
for the measured transverse strains are necessary because of the construc-
tion of the wire resistance strain gage. The method of correction is
given in the appendix.

A quantity of considerable interest in the theoretical study was the
nature of the plastic dilatation. Accordingly, the plastic dilatation
as a function of strain deviation is given in figures 13, lh, and 15 for
the materials studied. The strain deviations were computed according
to the definition of this quantity, and the plastic dilatation was
obtained by equation (15).
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Discussion of Experimental Results

In all cases, the values of strain shown in the figures were
obtained by averaging each back-to-back set of strain gages to eliminate
any bending. In the worst case, it was found that the maximum bending
strain was approximately 4 percent of the axial strain.

In several of the plots of Poisson's ratio variation shown in fig-
ureg 7 to 12 it can be observed that the elastic value of Poisson's
ratiao is not constant. Any scatter which exists at the first few loading
pointe may possibly be attributed to experimental technique. However,
the consistent variation of the elastic Poisson'’s ratio shown for the
tension specimens In figure 10 suggests that a nonconstant elastic
Poisson's ratio may actually be a property of the materials tested.
That such behavior was not observed in reference 2, and possibly in other
investigations, is attributed to the fact that the elastic Poisson's
ratio was computed as the ratio of the slopes of straight lines drawn
through stress-axial~strain and stress-~transverse-strain data in the
elastic region.

CORRELATION OF THEORY AND TEST DATA

1

A significant feature of the experimental study is contained in
figures 13, 14, and 15 which show that the plastic dilatation is not
zero for the aluminum alloys under investigation. This experimental
fact may be attributed, in part, to the anisotropic character of these
engineering meterials. .

The theoretical variation of Poisson's ratio given in the section
entitled "Theoretical Consideration" was derived for an orthotropic
solid. The stress-strain characteristics of* the alloys used for the
experimental investigation indicate that the cases given in the following
table may be conaidered orthotropic if it is assumed that the transverse
strains are induced by an effective transverse load of the same sense as
the applied load. ’ -

Material Loading
14s-T6 Tension in z-direction
2hs-Th Tension in z-direction
2hs-Th . Compression in z-direction
758-T6 Tension in z~direction
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Thus, experimental data are provided for examination of the theo-
retical variation of Poisson's ratio given in "Theoretical Considerations"
by the relation

- &V - v¥) (20)

Poisson's ratio for varlous plastic strains may be computed by use
of equation (20) if the following quantities are known:

(a) The elastic value of Poisson's ratio V¥

(b) The stress-strain characteristics of the material in the direc-
tion of application of load from which e*/e¢ can be computed

(¢) The term V¥V which for a plastically incompressible iéotropic
solid has the constant value of 1/2

The coefficient 'V bears further discussion since it is a term
which apparently incorporates the effects of nonvenishing plastic
dilatation. From equation (20) this coefficient may be expressed as

lim v =9
e*fe—>0 - (21)
It is the asymtotic value of the Poisson ratio. variation to which the
elastic properties make no contribution, or it can be imagined as the
strain ratio of a material in which the dilatations were purely plastic.
It is referred to hereafter as the asymptotic strain ratio.

Furthermore, the plastic dilatation for an orthotropic material was
assumed to be given by

3=08(1-29) N (17)

If the asymptotic strain ratio is a constant, then the plastic dilatation
should be a linear function of .the strain deviation.

An examination of figures 13, 1h and 15 for the orthotropic cases
listed in the preceding table indicated that although considerable
scatter does exist among the ‘experimental points, a possible linear
relationship exists between plastic dilatation and strain deviation -
within the range of strains considered. A 'streight line was passed
through the test data by the method of least squares and Vv was computed
from
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7-30-3) (e

The values of V obtained from figures 13, 14, and 15 by means of
equation (17a) are given in the following table:

Material ‘ Loading Computed Vv V- V¥
1hs-T6 Tension in z-direction 0.65 0.30
ohs-Th Tension in z-direction .56 .22
ohs-Th Compression in z-direction .63 .29
T58-T6 Tension in z-direction .60 .25

To test further the validity of the theory by use of the experimental
data contained herein, it is proposed to examine these data by use of
equation (20) to determine if the value of the asymptotic strain ratio
is constant for various strains and compares with the values given in

the preceding table. For this purpose, equation (20) can be rewritten
in the form
*

- R
T oV "V (22)

Equation (22) can be simplified by letting

v=V +p _ (23)

where p 1is the change in vy from the elastic value. With this
substitution, equation (22) reduces to.

VIR L (2k)

For the cases listed in the table above, values of p as a function
of ¢ were obtained from curves faired through the test data given in
Tigures T, 9, and 11. The values of ¢*/e were computed from the stress-
strain curves of the materials given in figures h, 5, and 6. Then by use
of equation (24) the asymptotic strain ratios were calculated for the
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series of selected points. These data are shown in figure 16 as com-
pared with the values of the asymptotic strain ratio given in the
preceding table.

Reasonably good agreement exists between the two methods of compu-
tation among all the cases except for 14S-T6 aluminum alloy. The greatest
discrepencies between the two sets of data occur at values of €*/e¢
approaching unity. The nature of equation (24) is such that large errors
are associated with this range of g*/g values and consequently more
weight should be given to the points removed from this region.

DISCUSSION

The Poisson's ratio test data presented herein for the yield region
of the stress-straln curve exhibit the same general characteristics as
the test data given in reference 2 for similar aluminum alloys. The
tests reported in reference 2, however, also go far beyond the yield
region and indicate that in many cases the variation of Poisson's ratio
reaches a maximm &t a strain of between 2 and 6 percent and then
steadily decreases.

Tt appears that this behavior can be attributed to the fact that
beyond a strain of approximately 2 percent the strains are no longer
small in the sense that the second- and third-order terms in the dila-
tation equation (10) may be neglected. This is demonstrated in refer-
ence 2 by computing Poisson's ratio for a plastically incompressible
isotropic solid using the following expression which can be derived from
equation (10) with the above assumptions:

<} + 9 /2.
L+ (25)

1~
V=
€

A comparison of numerical results obtained from equation (25) and
the variation of Poisson's ratio given by equation (20) reveals that
the latter is adequate up to a strain of approximately 2 percent. Beyond
this value of strain, equation (20) asymptotically approaches a maximum,
vhereas equation (25) reaches & maximum and then decreases in substantial
agreement with the experimental behavior observed in reference 2.

The test data on plastic dilatation obtained from strain measure-
ments and shown in figures 13, 14, and 15 indicate that tensile loading
in the yield region is accompanied by a permanent decrease in volume,
whereas compression results in & permanent increase in volume. These
data were subsequently checked by density measurements on several
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specimens used in the experimental investigation of Poisson's ratio and
also by independent volume measurements on a block of 14S-T6 aluminum
alloy compressed in the y-direction to various values of strain devia-
tion. From the latter, the data indicate that the volume changes noted
appear to be associated with the yield region only and apparently decrease
to negligible volume changes beyond & strain deviation of the order of
0.02 inch per inch.

CONCLUDING REMARKS

A systematic set of test data for the variation of Poisson's ratio
in the yield region of the stress-strain curve is presented for the
aluminum alloys 14S-T6, 24S-Th, and 75S8-T6. The test data are for simple
tensile or compressive loading along three orthogonal axes.

For an orthotropic solid, a theoretical variation of Poisson's ratio
in the yleld region was obtained from dilatational considerations.
Certain of the test data indicated that under the loading used the
material could be considered orthotropic. These datas were used to con-
firm the validity of the assumptions made in deriving the theoretical
variation of Poisson's ratio.

Daniel Guggenheim School of Aeronautics
College of Engineering
New York University
New York, N.Y., November 14, 1950
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APPENDIX
GAGE-FACTOR CORRECTION FOR A ONE-DIMENSIONAL STRESS FIELD

The use of 90° crossed-type (Xx) resistence strain gages in a one-
dimensional stress field requires that a correction be applied to the
stated gage factor of the gage which 1s perpendicular to the applied
load. This correction arises from the fact that the end loops of the
transverse gage are subjected to a different strain from that used to
determine the stated gage factor. The stated gage factor of the strain
gage alined in the direction of the applied load requires no correcticn
since the manner of loading used in the test corresponds to that used
in calibration of the gage. :

The symbols used in the following discussion are:

R resistance of strain-sensitive wire

p | resisitivity ’

L length of strain-sensitive wire

A area of strain-sensitive wire

k constent involving chaﬁges in p, L, and A
1 length of strain-gage grid ’
W width of strain-gage grid

n number of grip loops plus 1

G gage factor ’
T strain reading

The initial resistance of a strain gege in which the strain-
sensitive wire is arranged in the conventional rectangular grid is

R, = pOLq/AO ’ (A1)

Under deformation, the resistance is changed by the increment A(pL/A)
vhich involves changes in p, . L, and A. It 1s known, however, that
this increment is a function of the deformation of the wire only. Thus
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_&_{. _ kAoﬁlnl + €2W> (Ag)

Ro P, \ nl +w
where Gl is the strain along the axis of the gage and €p is the
transverse strain. For loadings in which € = - Ve,, equation (A2)
can be rewritten in the form

R/R, (
p2) W
G 1 201 - vw (83)

where

G = K, L ~Vw
Po\nl +w
The left-hand term of equation (A3) is the reading obtained from the
strain indicator. Equation (A3) can be written approximately as

T=e + (:L - v2>62 (w/n1) (Ak)

The corrected transverse strain is then

€ =T - (l - V2)€2 (w/n1) (A5)

For the AX-5 strain gage used in the test described in the section
entitled “Experimental Investigation," n = 10 and w/7 = 0.5. Thus

€, =T - o.o5<1 -V2)62 (A6)

The only difficulty encountered in using equation (A6) to correct the
transverse strain measurements is that Poisson's ratio was unknown.
As a first approximation VvV was calculated by taking the negative of
r/ee. It was found that a second epproximation was unnecessary.
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Figure 1.- Tension and compressionﬁ specimens used in experimental
investigation. V-ends are to be flat, square, and parallel
within +¥0.002 inch.
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Figure 13.- Plastic dilatation against strain deviation for

-

145-T6 aluminum alloy.
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Figure 14.- Plastic dilatation against strain deviation for
245-Th aluminum alloy.
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Figure 15.- Plastic dilatation against strain deviation for

T58-T6 aluminum alloy.
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Figure 16.- Comparison of computed values of

NACA-Langley - 1-29-52 - 1006




